ECE 312 Electronic Circuits (A)

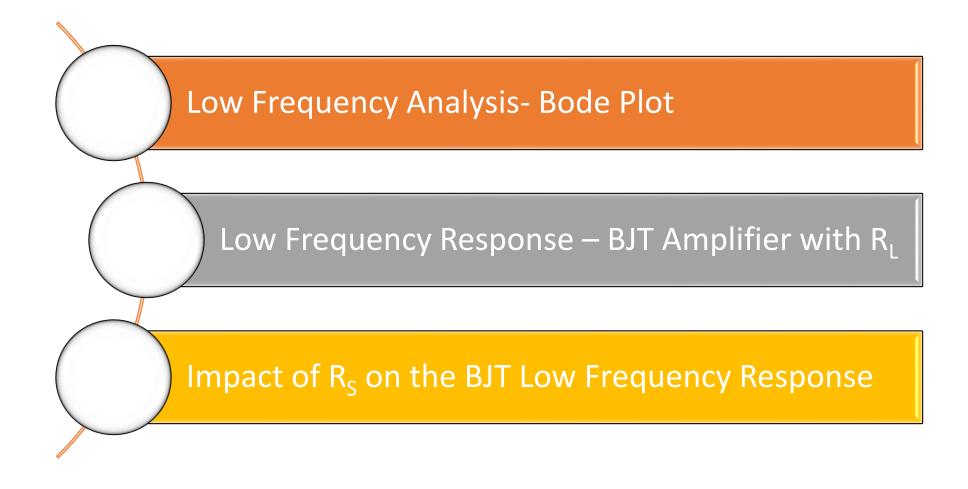
Lec. 13: BJT Low Frequency Response

Instructor

Dr. Maher Abdelrasoul

http://www.bu.edu.eg/staff/mahersalem3

Agenda



Low Frequency Analysis- Bode Plot

Defining the Low Cutoff Frequency

- In the low-frequency region of the single-stage BJT amplifier, it is the RC combinations formed by the network capacitors C_C , C_E , and C_S and the network resistive parameters that determine the cutoff frequencies
- Voltage-Divider Bias Config.

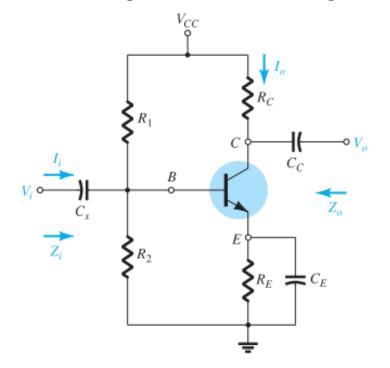


FIG. 9.15
Voltage-divider bias configuration.

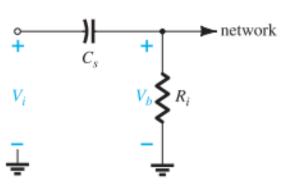
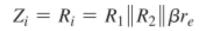


FIG. 9.16

Equivalent input circuit for the network of Fig. 9.15.



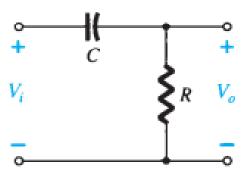
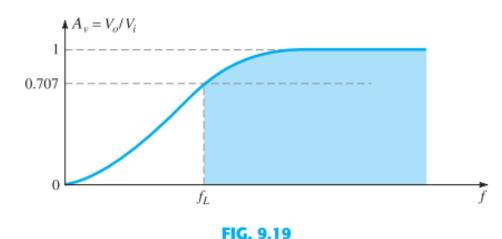


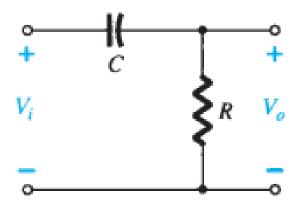
FIG. 9.14

RC combination that
will define a low-cutoff
frequency.



Low-frequency response for the RC circuit of Fig. 9.14.

Defining The Low Cutoff Frequency ..



$$V_0 = \frac{RV_i}{R + X_C}$$

The magnitude of V_o is

$$V_o = \frac{RV_i}{\sqrt{R^2 + X_C^2}}$$

For the special case where $X_C = R$,

$$V_o = \frac{RV_i}{\sqrt{R^2 + X_C^2}} = \frac{RV_i}{\sqrt{R^2 + R^2}} = \frac{RV_i}{\sqrt{2R^2}} = \frac{RV_i}{\sqrt{2R}} = \frac{1}{\sqrt{2}}V_i$$

$$|A_v| = \frac{V_o}{V_i} = \frac{1}{\sqrt{2}} = 0.707|_{X_C = R}$$

$$X_C = \frac{1}{2\pi f_L C} = R$$

$$f_L = \frac{1}{2\pi RC}$$

Defining The Low Cutoff Frequency ...

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R}{R - jX_{C}} = \frac{1}{1 - j(X_{C}/R)} = \frac{1}{1 - j(1/\omega CR)} = \frac{1}{1 - j(1/2\pi fCR)}$$

$$A_{v} = \frac{1}{1 - j(f_L/f)}$$

In the magnitude and phase form,

$$A_{v} = \frac{V_{o}}{V_{i}} = \underbrace{\frac{1}{\sqrt{1 + (f_{L}/f)^{2}}}}_{\text{magnitude of } A_{v}} \underbrace{\frac{/\tan^{-1}(f_{L}/f)}{\cot^{-1}(f_{L}/f)}}_{\text{phase} \not \leftarrow \text{by which } V_{o} \text{ leads } V_{i}}$$

$$A_{\nu(\text{dB})} = 20 \log_{10} \frac{1}{\sqrt{1 + (f_L/f)^2}}$$

$$\theta = \tan^{-1} \frac{f_L}{f}$$

when
$$f = f_L$$
,

$$|A_v| = \frac{1}{\sqrt{1 + (1)^2}} = \frac{1}{\sqrt{2}} = 0.707 \Longrightarrow -3 \text{ dB}$$

Bode Plot

$$A_{\nu(\text{dB})} = 20 \log_{10} \frac{1}{\sqrt{1 + (f_L/f)^2}}$$

$$A_{\nu(dB)} = -20 \log_{10} \left[1 + \left(\frac{f_L}{f} \right)^2 \right]^{1/2}$$

$$= -\left(\frac{1}{2} \right) (20) \log_{10} \left[1 + \left(\frac{f_L}{f} \right)^2 \right]$$

$$= -10 \log_{10} \left[1 + \left(\frac{f_L}{f} \right)^2 \right]$$

For frequencies where $f \ll f_L$ or $(f_L/f)^2 \gg 1$,

$$A_{\nu(\mathrm{dB})} = -10 \log_{10} \left(\frac{f_L}{f}\right)^2$$

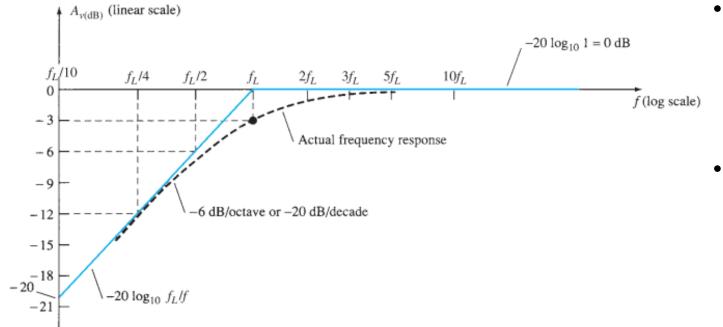
$$A_{\nu(dB)} = -20 \log_{10} \frac{f_L}{f}$$

$$f \ll f_L$$

Bode Plot

$$A_{\nu(dB)} = -20 \log_{10} \frac{f_L}{f}$$

The piecewise linear plot of the asymptotes and associated breakpoints is called a **Bode plot** of the magnitude versus frequency.



- A change in frequency by a factor of two, equivalent to one octave, results in a 6-dB change in the ratio, as shown by the change in gain from $f_1/2$ to f_1 .
- For a 10:1 change in frequency, equivalent to one decade, there is a 20-dB change in the ratio, as demonstrated between the frequencies of $f_1/10$ and f_1 .

Bode Plot..

Phase Angle:

$$\theta = \tan^{-1} \frac{f_L}{f}$$

For frequencies $f \ll f_L$,

$$\theta = \tan^{-1} \frac{f_L}{f} \rightarrow 90^{\circ}$$

For instance, if $f_L = 100f$,

$$\theta = \tan^{-1} \frac{f_L}{f} = \tan^{-1}(100) = 89.4^{\circ}$$

For $f = f_L$,

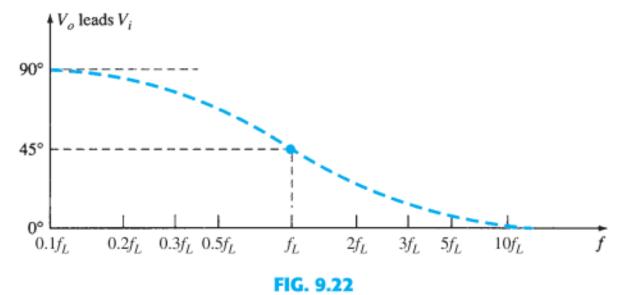
$$\theta = \tan^{-1} \frac{f_L}{f} = \tan^{-1} 1 = 45^{\circ}$$

For $f \gg f_L$,

$$\theta = \tan^{-1} \frac{f_L}{f} \rightarrow 0^{\circ}$$

For instance, if $f = 100f_L$,

$$\theta = \tan^{-1} \frac{f_L}{f} = \tan^{-1} 0.01 = 0.573^{\circ}$$



Phase response for the RC circuit of Fig. 9.14.

Example

For the network of Fig. 9.23:

- a. Determine the break frequency.
- Sketch the asymptotes and locate the -3-dB point.
- Sketch the frequency response curve.
- d. Find the gain at $A_{\nu(dB)} = -6$ dB.

Solution:

a.
$$f_L = \frac{1}{2\pi RC} = \frac{1}{(6.28)(5 \times 10^3 \,\Omega)(0.1 \times 10^{-6} \,\mathrm{F})}$$

 $\approx 318.5 \,\mathrm{Hz}$

b. and c. See Fig. 9.24.

d. Eq. (9.27):
$$A_v = \frac{V_o}{V_i} = 10^{A_{v(\text{dB})/20}}$$

= $10^{(-6/20)} = 10^{-0.3} = 0.501$

and $V_o = 0.501 V_i$ or approximately 50% of V_i .

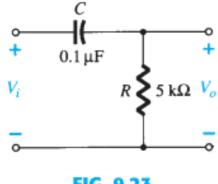


FIG. 9.23

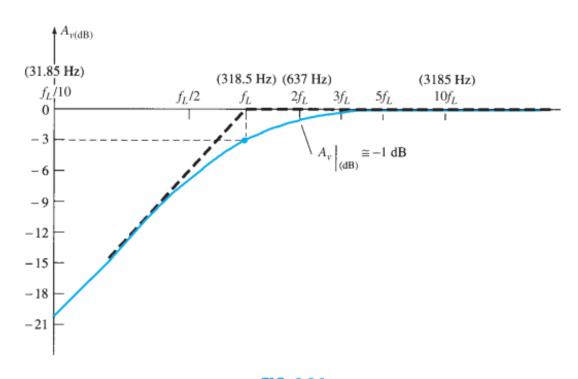


FIG. 9.24 Frequency response for the RC circuit of Fig. 9.23.

Low Frequency Response – BJT Amplifier with R_L

Loaded BJT Amplifier

In the voltage-divider ct.

 \rightarrow the capacitors Cs, C_C, and C_E will determine the low-frequency response.

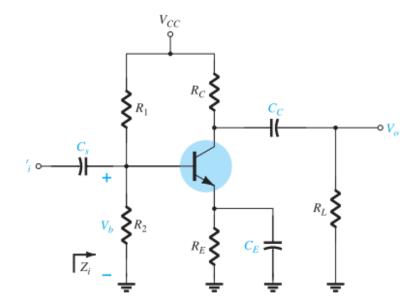


FIG. 9.25

Loaded BJT amplifier with capacitors that affect the lowfrequency response.

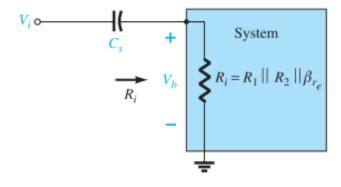


FIG. 9.26

Determining the effect of C_s on the lowfrequency response.

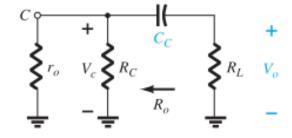


FIG. 9.28

Localized ac equivalent for C_C with $V_i = 0 \ V$.

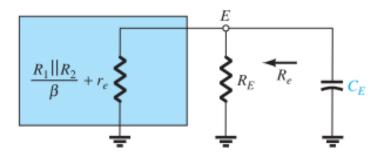


FIG. 9.30 Localized ac equivalent of C_E .

$$f_L = \max(f_{Ls}, f_{Lc}, f_{LE})$$

Loaded BJT Amplifier

\rightarrow Cs:



FIG. 9.26

Determining the effect of C_s on the lowfrequency response.

$$R_i = R_1 \| R_2 \| \beta r_e.$$

$$f_{L_s} = \frac{1}{2\pi R_i C_s}$$

\rightarrow Cc:

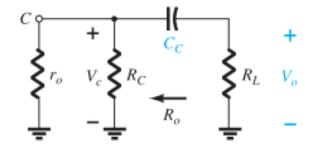


FIG. 9.28

Localized ac equivalent for C_C with $V_i = 0 \ V$.

$$R_o = R_C \| r_o$$

$$f_{L_C} = \frac{1}{2\pi (R_o + R_L)C_C}$$

$$f_L = \max(f_{Ls}, f_{Lc}, f_{LE})$$

$\rightarrow C_E$:

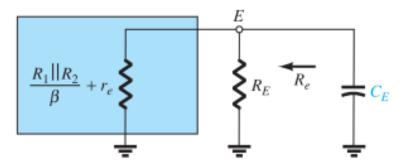


FIG. 9.30 Localized ac equivalent of C_E .

$$R_e = R_E \| \left(\frac{R_1 \| R_2}{\beta} + r_e \right)$$

$$f_{L_E} = \frac{1}{2\pi R_e C_E}$$

Impact of R_S on the BJT Low Frequency Response

Impact of R_S

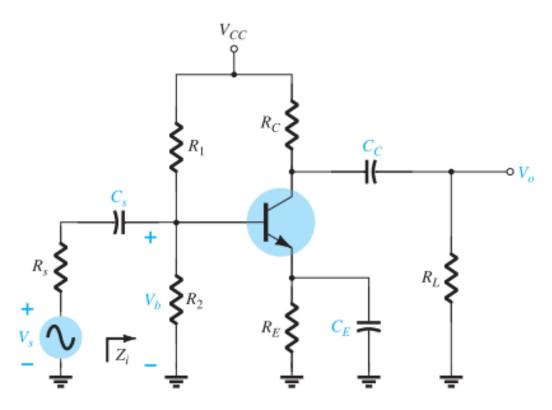


FIG. 9.32

Determining the effect of R_s on the low-frequency response of a BJT amplifier.

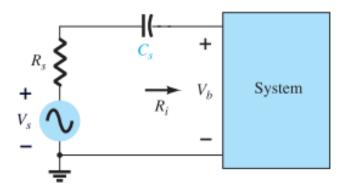


FIG. 9.33

Determining the effect of C_s on the lowfrequency response.

$$f_{L_s} = \frac{1}{2\pi (R_i + R_s)C_s}$$

$$f_{L_C} = \frac{1}{2\pi (R_o + R_L)C_C}$$

$$f_{L_E} = \frac{1}{2\pi R_e C_E}$$

$$R_e = R_E \| \left(\frac{R_s'}{\beta} + r_e \right) \text{ and } R_s' = R_s \| R_1 \| R_2$$

